46 research outputs found

    Why Do You Spread This Message? Understanding Users Sentiment in Social Media Campaigns

    Full text link
    Twitter has been increasingly used for spreading messages about campaigns. Such campaigns try to gain followers through their Twitter accounts, influence the followers and spread messages through them. In this paper, we explore the relationship between followers sentiment towards the campaign topic and their rate of retweeting of messages generated by the campaign. Our analysis with followers of multiple social-media campaigns found statistical significant correlations between such sentiment and retweeting rate. Based on our analysis, we have conducted an online intervention study among the followers of different social-media campaigns. Our study shows that targeting followers based on their sentiment towards the campaign can give higher retweet rate than a number of other baseline approaches

    Efficient Neural Query Auto Completion

    Full text link
    Query Auto Completion (QAC), as the starting point of information retrieval tasks, is critical to user experience. Generally it has two steps: generating completed query candidates according to query prefixes, and ranking them based on extracted features. Three major challenges are observed for a query auto completion system: (1) QAC has a strict online latency requirement. For each keystroke, results must be returned within tens of milliseconds, which poses a significant challenge in designing sophisticated language models for it. (2) For unseen queries, generated candidates are of poor quality as contextual information is not fully utilized. (3) Traditional QAC systems heavily rely on handcrafted features such as the query candidate frequency in search logs, lacking sufficient semantic understanding of the candidate. In this paper, we propose an efficient neural QAC system with effective context modeling to overcome these challenges. On the candidate generation side, this system uses as much information as possible in unseen prefixes to generate relevant candidates, increasing the recall by a large margin. On the candidate ranking side, an unnormalized language model is proposed, which effectively captures deep semantics of queries. This approach presents better ranking performance over state-of-the-art neural ranking methods and reduces ∼\sim95\% latency compared to neural language modeling methods. The empirical results on public datasets show that our model achieves a good balance between accuracy and efficiency. This system is served in LinkedIn job search with significant product impact observed.Comment: Accepted at CIKM 202

    Learning To Rank Diversely At Airbnb

    Full text link
    Airbnb is a two-sided marketplace, bringing together hosts who own listings for rent, with prospective guests from around the globe. Applying neural network-based learning to rank techniques has led to significant improvements in matching guests with hosts. These improvements in ranking were driven by a core strategy: order the listings by their estimated booking probabilities, then iterate on techniques to make these booking probability estimates more and more accurate. Embedded implicitly in this strategy was an assumption that the booking probability of a listing could be determined independently of other listings in search results. In this paper we discuss how this assumption, pervasive throughout the commonly-used learning to rank frameworks, is false. We provide a theoretical foundation correcting this assumption, followed by efficient neural network architectures based on the theory. Explicitly accounting for possible similarities between listings, and reducing them to diversify the search results generated strong positive impact. We discuss these metric wins as part of the online A/B tests of the theory. Our method provides a practical way to diversify search results for large-scale production ranking systems.Comment: Search ranking, Diversity, e-commerc

    Collaborative Location Recommendation by Integrating Multi-dimensional Contextual Information

    Get PDF
    Point-of-Interest (POI) recommendation is a new type of recommendation task that comes along with the prevalence of location-based social networks and services in recent years. Compared with traditional recommendation tasks, POI recommendation focuses more on making personalized and context-aware recommendations to improve user experience. Traditionally, the most commonly used contextual information includes geographical and social context information. However, the increasing availability of check-in data makes it possible to design more effective location recommendation applications by modeling and integrating comprehensive types of contextual information, especially the temporal information. In this paper, we propose a collaborative filtering method based on Tensor Factorization, a generalization of the Matrix Factorization approach, to model the multi dimensional contextual information. Tensor Factorization naturally extends Matrix Factorization by increasing the dimensionality of concerns, within which the three-dimensional model is the one most popularly used. Our method exploits a high-order tensor to fuse heterogeneous contextual information about users’ check-ins instead of the traditional two dimensional user-location matrix. The factorization of this tensor leads to a more compact model of the data which is naturally suitable for integrating contextual information to make POI recommendations. Based on the model, we further improve the recommendation accuracy by utilizing the internal relations within users and locations to regularize the latent factors. Experimental results on a large real-world dataset demonstrate the effectiveness of our approach

    Optimizing Airbnb Search Journey with Multi-task Learning

    Full text link
    At Airbnb, an online marketplace for stays and experiences, guests often spend weeks exploring and comparing multiple items before making a final reservation request. Each reservation request may then potentially be rejected or cancelled by the host prior to check-in. The long and exploratory nature of the search journey, as well as the need to balance both guest and host preferences, present unique challenges for Airbnb search ranking. In this paper, we present Journey Ranker, a new multi-task deep learning model architecture that addresses these challenges. Journey Ranker leverages intermediate guest actions as milestones, both positive and negative, to better progress the guest towards a successful booking. It also uses contextual information such as guest state and search query to balance guest and host preferences. Its modular and extensible design, consisting of four modules with clear separation of concerns, allows for easy application to use cases beyond the Airbnb search ranking context. We conducted offline and online testing of the Journey Ranker and successfully deployed it in production to four different Airbnb products with significant business metrics improvements.Comment: Search Ranking, Recommender Systems, User Search Journey, Multi-task learning, Two-sided marketplac

    Why Do You Spread This Message? Understanding Users Sentiment in Social Media Campaigns

    No full text
    Twitter has been increasingly used for spreading messages about campaigns. Such campaigns try to gain followers through their Twitter accounts, influence the followers and spread messages through them. In this paper, we explore the relationship between followers’ sentiment towards the cam-paign topic and their rate of retweeting of messages gener-ated by the campaign. Our analysis with followers of mul-tiple social-media campaigns found statistical significant correlations between such sentiment and retweeting rate. Based on our analysis, we have conducted an online inter-vention study among the followers of different social-media campaigns. Our study shows that targeting followers based on their sentiment towards the campaign can give higher re-tweet rate than a number of other baseline approaches
    corecore